Hardening OpenRefine’s Extension
Architecture

This application focuses on the goal post Better Support for OpenRefine Extensions. Unlike the
Plugin Manager application, this focuses on understanding the tradeoffs of the various options
discussed in the Improving the UX of extension install. and Butterfly thread.

Whereas the Plugin Manager Ul is largely user-centric, the discovery work discussed in this
application is geared towards an improved developer experience for extension developers and
OpenRefine maintainers.

Contact information

Your name Martin Magdinier

Email address martin@openrefine.org

Phone number +1-503-383-1430

Organisation Code For Science and Society

Country USA

General project information

Proposal name Hardening OpenRefine’s Extension Architecture

Website / wiki https://openrefine.org

https://openrefine.org/docs/technical-reference/goal-posts#better-support-for-openrefine-extensions
https://forum.openrefine.org/t/improving-the-ux-of-extension-install-and-butterfly/52/

Please be short and to the point in your answers; focus primarily on the what and how,
not so much on the why. Add longer descriptions as attachments (see below). If
English isn't your first language, don't worry — our reviewers don't care about spelling
errors, only about great ideas. We apologise for the inconvenience of having to submit
in English. On the up side, you can be as technical as you need to be (but you don't
have to). Do stay concrete. Use plain text in your reply only, if you need any HTML to

make your point please include this as attachment.

Abstract: Can you explain the whole project and its expected
outcome(s). (1200 characters)

OpenRefine provides a foundation for developers to extend the software’s core functionality.
There are many points for extension, with more being added in recent years. Meanwhile,
OpenRefine itself continues to evolve, and new extensions are continually being developed. The
combined growth of OpenRefine and the extension ecosystem has put additional strain on
maintainers. There is a consensus within the developer community on some key points of action
that can remediate some of this burden.

This project will provide additional tooling to support both extension developers and core
OpenRefine maintainers. This would be done by providing documentation of extension points,
automated checks for API breakages, and extension isolation. Extension isolation in particular
would improve the resilience of OpenRefine, as it would decrease the likelihood of one
extension causing problems for the rest of the system.

This project will also unblock future improvements. Upgrading key dependencies is currently
infeasible due to the heavy maintenance burden it would place on extension maintainers. The
OpenRefine ecosystem will be more sustainable once this burden is removed.

Have you been involved with projects or organisations relevant to
this project before? And if so, can you tell us a bit about your
contributions? (optional, help to determine we are the right person
to take on this project 2500 characters)

This project is led by the OpenRefine core team and has received widespread community
support.

OpenRefine (lead applicant) is fiscally sponsored by Code for Science and Society, a 501(c)(3)
charitable organization in the USA. OpenRefine leads the development and sustainability of the
tool, including maintenance planning, technical debt reduction, contributor onboarding,
documentation improvements, maintainability, and community support. The project is led by
Rory Sawyer, Developer and Contributor Engagement Lead, and Martin Magdinier, Project
Manager.

We have secured partnerships with the following European institutes:

North Rhine-Westphalian Library Service Centre (hbz) relies heavily on OpenRefine as a
stable and versatile third-party tool for our customers and partners to comfortably reconcile with
and reuse the data they provide. In cooperation with the German National Library (DNB) HBZ
provides the reconciliation service for the Integrated Authority File (GND) at
https://reconcile.gnd.network which is heavily used by memory institutions and researchers in
the DACH region, almost exclusively through OpenRefine. (See e.g. the results from a poll in
2022: https://blog.lobid.org/2022/07/19/survey-results.html.) HBZ is currently developing an
OpenRefine extension to update or create GND records after reconciliation. HBZ will directly
benefit from an improved OpenRefine extension architecture.

NFDI4Culture, the consortium for research data on material and immaterial cultural heritage
within the German National Research Data Infrastructure, relies heavily on OpenRefine to
establish a needs-based infrastructure that serves our community of interest, ranging from
architecture, art history and musicology to theatre, dance, film and media studies. They have
allocated staff time to pilot testing, user feedback sessions, and documentation review. They will
also or co-host at least one webinar in Germany to disseminate project results.

We also received a letter of support from LaOficina Producciones Culturales regarding their
usage of OpenRefine.

https://blog.lobid.org/2022/07/19/survey-results.html

Requested support

Explain what the requested budget will be used for?
Does the project have other funding sources, both past and present?
(If you want, you can in addition attach a budget at the bottom of the form)

Explain hardware, labor (including rate), travel cost , technical meeting - max 2500
characters

Budget:
Team Organization

e Martin Magdinier: Project Management: hourly rate EUR 50
e Rory Sawyer: Development: hourly rate EUR 65
e Code for Science and Society fiscal sponsorship fees (15% of total grant)

Hardware & Infrastructure: No dedicated hardware purchase is required: all development and
testing will leverage cloud-based CI environments and existing OpenRefine infrastructure
servers.

Funding Sources

Present: There are no concurrent cash co-funders for this NLNet application; however, we will
leverage the established OpenRefine community roadmap and in-kind contributions (CI hosting,
volunteer tester time) to maximize impact at minimal additional cost.

Previous funding sources for OpenRefine are available at https://openrefine.org/funding

Milestones

Milestone 1: Identify and annotate extension points
e Duration: 1 month
e Estimated effort: 90h
e Budget: EUR 5,400

Milestone 2: Improve extension isolation in Butterfly
e Duration: 3 months

https://openrefine.org/funding

e Estimated effort: 280h
e Budget: EUR 17,300
Milestone 3: Automated APl compatibility check
e Duration: 2 months
e Estimated effort: 220h
e Budget: EUR 13,400
Milestone 4: Outreach and support for extension developers
e Duration: 1 month
e Estimated effort: 60h
e Budget: EUR 3,300

Compare your own project with existing or historical efforts. (4000
characters)

OpenRefine's extension ecosystem has been actively developed for 15 years. Over that time,
there have been discussions about approaching the problem both from within OpenRefine itself
and from within extensions themselves.

The efforts to improve the extension ecosystem from within OpenRefine seem to have largely
addressed specific issues, like exposing testing utilities for extension developers
(https://github.com/OpenRefine/OpenRefine/issues/6556) or resolving issues around shared
dependencies (https://github.com/OpenRefine/OpenRefine/issues/6475).

There has also been recent work towards annotating parts of the codebase as explicitly part of
the public OpenRefine API. This was started for the frontend in this pull request:
https://github.com/OpenRefine/OpenRefine/pull/7296

This project aims to assist this frontend work while also bringing the notion of annotating
extension points to cover the backend code as well.

There has also been much discussion about moving on to an entirely new framework for
extensions. The OSGi and PF4J frameworks have been mentioned as potential alternatives to
the homegrown framework OpenRefine uses, with OSGi being notable in that it supports the
Eclipse extension ecosystem. While this project does not explicitly include evaluation of these
frameworks, it will leave the extension ecosystem in a better place to evaluate these alternatives
as a future option.

Core OpenRefine developers have also contributed to automated testing within extensions
themselves. Most prominent is the frontend test suite implemented in the CommonsExtension:
https://github.com/OpenRefine/CommonsExtension/pull/157

This project will extend this work by documenting the approach taken by this extension to allow
extension developers to adopt such testing for their own extensions.

What are significant technical challenges you expect to solve
during the project, if any? (5000 characters)

The OpenRefine community has been discussing the question of extension ecosystem
improvements for years. Over that time, the discussion has coalesced around a few high-level
areas of work. These areas include: documenting the existing extension points; navigating
releases containing breaking changes; and making it easier to preserve API stability. In some
cases, concrete approaches have been outlined in forum threads and GitHub issues. The
milestones in this project have been designed to support the work in each of these areas. For
areas that have less outlined material, the following work aims to provide clarity on a path
forward.

Milestone 1: Identify and annotate extension points

The first milestone in this project will be to categorize the existing extension points in
OpenRefine. While there are published guidelines for extending OpenRefine, there is a large
area for potential improvement. A report on which areas of the codebase are used in popular
extensions will help the community decide which they would like to support moving forward.
Additionally, this stage of the project includes codebase documentation for each of the extension
points found in this stage. There is an existing strategy for frontend extension points that
leverages JSDoc annotations. The backend will need a similar strategy. In each case, the
documentation style will need to support marking extension points as deprecated.

Deliverable:
e Audit report: complete JSDoc pass (issue #7017) and publish a machine-readable
registry of supported versus deprecated hooks.

Milestone 2: Improve extension isolation in Butterfly

Butterfly is the web framework that OpenRefine uses to configure backend functionality.
It is also how extensions can register new functionality within OpenRefine by leveraging
extension points. At a high level, Butterfly allows for extensions by loading extension code from
a specific directory and running each extensions’ initialization script. Butterfly is no longer used
by other active projects, and even OpenRefine has forked the project to customize some of its
behavior.

This milestone aims to address two existing extension isolation issues: shared
dependencies and initialization failures. The existing infrastructure for loading libraries on which
OpenRefine and its extensions rely will make all dependencies available to the codebase. In
practice, this creates a difficult situation for any extension that wishes to bring its own
dependencies. One extension can introduce a conflicting dependency (either directly or
indirectly) which will lead to issues across the entire OpenRefine suite. This work has been
discussed in this GitHub issue: https://github.com/OpenRefine/simile-butterfly/issues/15.

The other isolation issue is that an extension can encounter an issue and leave the entire
software suite in a broken state.

Deliverable:
e Resolve dependency isolation issue in Butterfly, OpenRefine’s web framework
e Minimize impact of initialization failures in extensions

Milestone 3: Automated APl compatibility check

API compatibility has not been systematically tracked. This milestone will deliver a tool
that can be used to automatically report on any changes in the supported external API from one
version of OpenRefine to the next. This tooling can be used to reduce the maintenance burden
of OpenRefine's developer community when evaluating a release for potentially impactful
changes.

Deliverable:
e Continuous compatibility tests: GitHub Actions matrix that checks for API compatibility
compared to the latest stable version, surfacing breakage early (#7362)

Milestone 4: Outreach and support for extension developers

Breaking changes can only be avoided for so long. This milestone will deliver support for
releasing breaking changes through the form of automated testing for extensions that can be
done to identify potential compatibility issues. Should there not be enough time for a fully
automated test suite, documentation of existing test methods will provide guidance to extension
developers. More so than other milestones, this will include extensive outreach to the developer
community to ensure that this tooling provides an overall benefit to the extension ecosystem.

Deliverable
e Documentation of the testing work done in CommonsExtension:
https://github.com/OpenRefine/CommonsExtension/pull/157
e If possible: an automated test suite for extension developers to extend

We will host two virtual workshops with EU and non-EU extension authors to review design
memos, gather feedback on breaking-change timelines and migration tooling.

After these milestones are completed, OpenRefine will be well positioned for follow-up
exploratory work.

Describe the ecosystem of the project, and how you will engage
with relevant actors and promote the outcomes? (2500
characters)

There are currently more than 20 extensions listed on the OpenRefine extensions page, and
many of them have maintainers who are active members of the OpenRefine forum
https://forum.openrefine.org/, which also serves as our developer discussion list. This forum also
includes users of and contributors to the core software. The forum will be the primary way of
engaging with the community while research is ongoing. Project members have held open office

https://openrefine.org/extensions
https://forum.openrefine.org/

hour calls in the past and will do so during this work as well. We will present the project's results
at our annual BarCamp conference.

We will engage with our European partner organization, NFDI and HBZ, who allocate staff time
to pilot testing, user feedback sessions, and documentation review. They will also co-host
workshops or webinars in Germany to disseminate project results.

In addition to these standard methods of communication, additional outreach will be made in the
form of surveys to the developer community, discovery calls with individual extension
developers, webinars and other group calls to present and discuss the different areas of work.

This outreach will also be targeted at non-extension developers as well. While this work is
primarily intended to support core OpenRefine maintainers and existing extension developers,
an effect of the improvements in this project will make extension development a less daunting
task for newcomers.

In the last 12 months, OpenRefine averaged 15,500 downloads per month, with 22 active
contributors during this time. A total of 163 issues were created, and 157 were closed via 212
pull requests. OpenRefine receives about 800 academic citations per year.

	Hardening OpenRefine’s Extension Architecture
	Abstract: Can you explain the whole project and its expected outcome(s). (1200 characters)
	Have you been involved with projects or organisations relevant to this project before? And if so, can you tell us a bit about your contributions? (optional, help to determine we are the right person to take on this project 2500 characters)
	Explain what the requested budget will be used for?
	Milestones

	Compare your own project with existing or historical efforts. (4000 characters)
	What are significant technical challenges you expect to solve during the project, if any? (5000 characters)
	Describe the ecosystem of the project, and how you will engage with relevant actors and promote the outcomes? (2500 characters)

