
Scaling OpenRefine

August 1, 2019

For nearly ten years, OpenRefine has served the needs of data science
communities. As a leading open source power tool to work with messy
data, it is taught in countless courses and workshops around the world. In
biomedical research alone, OpenRefine is cited in hundreds of scientific ar-
ticles, in fields such as genomics [1, 2, 3, 4], Alzheimer’s disease [5, 6, 7],
infectious diseases [8, 9, 10], oncology [11, 12, 13, 14] and clinical data man-
agement [15, 16, 17, 18]. To keep OpenRefine thriving in the next ten years,
we need to grow its contributor community and undertake fundamental im-
provements to its architecture.

1 goals

The main objectives of this proposal are twofold:

1. grow the community of OpenRefine contributors by reaching out to
seasoned users and helping them get involved more closely in the
project.

2. revamp the core architecture of the tool to handle larger datasets and
improve workflows.

Our goals will be reached if:

1. We onboard at least 20 new contributors over the course of the project,
and get contributions from 20 existing contributors. Contributions are
pull requests to any of the repositories in the GitHub organization.
They include translations, documentation, website curation and code.

2. OpenRefine can be used on datasets which do not fit in memory. By
this we mean that the deserialized data does not fit in the working
memory allocated to the Java Virtual Machine. The dataset might still
be smaller than the working memory when exported to a file.

2 growing the contributor community

One of the great assets of the OpenRefine project is its vibrant user com-
munity, which organizes training workshops, writes tutorials, provides high

1

2 growing the contributor community 2

quality support and advertises the project.1 This community is healthy, di-
verse socially and geographically.

Comparatively, the development team is of course small and but also less
diverse. This is a very common issue in open source projects, but in the
case of OpenRefine it can also be traced back to the project’s history, as it
was initially a product developed by Metaweb and then Google. The tran-
sition to an open source community required the formation of a group of
committed volunteers to take over. With six stable releases since the transi-
tion to an open source community, the project has proved its viability in this
form. However, we believe it would benefit from growing and diversifying
its contributor community.

We propose to take the following steps to make it easier for seasoned users
to join the project.

2.1 Developing an official user guide

OpenRefine’s documentation is currently written in the GitHub wiki asso-
ciated with the project,2 which is imperfect in many ways: it is hard to
discover, search and browse. There is no simple way to version it or trans-
late it. As a consequence, users tend to write their own tutorials on external
platforms rather than to improve the official documentation.3 Some docu-
mentation efforts play the role of official guide in certain communities.4 This
results in a myriad of tutorials, all with a slightly different focus but with of-
ten a significant overlap in content, which gradually become outdated as the
software evolves. As a user, this makes it hard to discover the best resources
to learn about certain aspects of the tool.

We propose to migrate the official documentation to a proper platform
such as ReadTheDocs, where it can be versioned and translated natively. By
providing an appealing space to write documentation, we hope to encourage
existing tutorial authors to contribute directly to it. This should help us grow
our contributor base and make it more diverse.

2.2 Developing a contributor guide

The existing documentation to get started on OpenRefine development does
not help contributors enough. Beyond the migration to a proper documenta-
tion platform as mentioned above, we need to give instructions to get started
with the most common Java IDE platforms (Eclipse, IntelliJ, Netbeans) and
provide detailed guidance about common tasks (writing new GREL func-
tions, operations, importers). We can then link to these instructions from the
issues, to encourage prospective contributors to step in.

1 This activity can be gauged by mentions of the tool on Twitter: https://tinyurl.com/

yyfj3d5y

2 https://github.com/OpenRefine/OpenRefine/wiki

3 See for instance the Japanese translation of the reconciliation documentation.
4 Such as the Library Carpentry’s OpenRefine lesson or Mathieu Saby’s OpenRefine course.

https://read-the-docs.readthedocs.io/en/latest/index.html
https://tinyurl.com/yyfj3d5y
https://tinyurl.com/yyfj3d5y
https://github.com/OpenRefine/OpenRefine/wiki
https://qiita.com/yayamamo/items/eade3e5788e6f359bce7
https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation
https://librarycarpentry.org/lc-open-refine/
https://msaby.gitlab.io/formation-openrefine-BULAC/

3 revamping the core data model 3

3 revamping the core data model

OpenRefine currently uses its own data storage backend. This choice is the
root cause of important limitations in the tool, that we outline below. Chang-
ing our data model with these issues in mind is an important investment for
the project to remain relevant in data-intensive fields, such as biology and
medical research.

3.1 Working with large data sets

The requirement to load entire projects in memory to work on them makes
it impractical to work on large datasets such as in genomics medicine. This
requires users to adapt the hard memory limit given to the Java Virtual
Machine depending on the size of their datasets and their available memory,
when they can afford enough RAM.

3.2 Refining collaboratively

OpenRefine is a web-based tool that is designed to be run locally by the user.
Although it can be hosted on a server, it is not designed for collaborative
work. As operations are applied in sequence to the project, working simul-
taneously on disjoint parts of a dataset is rarely viable. The tool does not
even have a notion of "user" which would let it track who performed each
change.

3.3 Analyzing, sharing and reusing workflows

The ability to extract workflows as JSON objects and reapply them on other
projects is a flagship feature of the tool. However, it has serious limitations.
It is hard to understand what a workflow does by looking at its represen-
tation in JSON, or even at the project history in the tool itself. There is no
simple way to reorganize a workflow, isolate reusable parts or undo selected
operations buried in the history.

3.4 Running workflows in production

Once a workflow has been created, one could want to run it periodically as
part of a wider pipeline. Although many of OpenRefine’s operations can be
easily parallelized [19], there is no simple way to run them on data streams
discovered progressively. The scheduling of operations is also naive, as they
are executed in sequence without any time sharing.

4 work plan

The first objective, to grow the contributor community, will be tackled by
Owen Stephens. Owen is best placed for this work since he is a long stand-

4 work plan 4

ing contributor to the project on many aspects, writing documentation, con-
tributing and reviewing code. He also runs many workshops in universities
to teach OpenRefine to researchers and has therefore a deep understanding
of the needs of the user community.

The second objective, to revamp the data model, will be handled by An-
tonin Delpeuch. As author of some of the research behind the proposed new
architecture [20], Antonin is in a good position to implement it in OpenRe-
fine. He has experience with carrying out large refactoring projects on Open-
Refine’s legacy code and cares deeply about how implementation decisions
will be perceived by the end user.

4.1 Growing the community

Our strategy to attract new contributors and retain existing ones is as follows.
The timescale is given on the assumption of Owen Stephens working part
time on this goal (0.5 full time equivalent).

1. Migrate the existing documentation to a new platform - 1 month

We obtain a versioned and translatable documentation on ReadThe-
Docs. Existing documentation pages redirect to the new platform to
avoid creating dead links.

2. Write tutorials for prospective contributors - 2 months

We document IDE set up, testing, making good pull requests. We
show example workflows to implement new functions, importers or
exporters.

3. Improve the existing user documentation - 6 months

All operations, facets, expression languages, importers and exporters
are documented.

4. Organize events focused on contribution to the project - 2 months

On the occasion of OpenRefine’s 10th anniversary (in 2020), we will
organize local events in targeted communities5 to show how to con-
tribute to the translations, documentation and code. Use the feedback
obtained at such events to inform the tasks above.

4.2 Revamping the data model

The new data model required to address all the issues mentioned in the
previous section is ambitious. We anticipate that implementing it in full is
likely to take significantly longer than a one year project. We decompose the
work needed into packages with intermediate deliverables. We anticipate
one year of full time development should cover packages 1 to 5. The other
goals are mentioned to relate the work to the project’s long term milestones.
The timescale is given on the assumption of Antonin Delpeuch working full
time on this goal for the entire duration of the project.

5 Given the growing popularity of OpenRefine in the Wikimedia community, the Wikimedia
Hackathon is one possible venue for this.

https://read-the-docs.readthedocs.io/en/latest/index.html
https://read-the-docs.readthedocs.io/en/latest/index.html

4 work plan 5

1. Preliminaries: expression languages - 1 month

Determining which column an expression depends on requires the abil-
ity to analyze expressions and extract the variables it reads.

Performing this analysis requires changing the interface implemented
by our expression languages (currently GREL, Jython and Clojure by
default) to allow for such an inspection. This can be done easily for
GREL but requires more work for other interpreters. Given that we
already have plans to migrate from Jython to GraalPython, we pro-
pose to carry out this migration and implement this analysis using the
Truffle library (which is used to define interpreters in the Graal frame-
work).

2. Column-based operations - 2 months

We introduce a new interface for row-wise, out of order operations
reading from a selection of columns. Existing operations which satisfy
these constraints can implement this interface. Similarly, facet configu-
rations expose which columns they depend on. This new data model
is based on the representation proposed in [20]. At this stage the data
processing backend does not change yet: everything is still held in
memory.

3. New data processing backend - 4 months

We migrate workflow execution to a dataflow backend such as Apache
Spark [21] through Apache Beam’s API [22]. In this version, the tool
can still execute workflows serialized in the current format, but cannot
read project data from previous versions.

We anticipate that the main benefits for end users at this stage are
mostly felt in memory management (ability to work on datasets which
do not fit in RAM) and marginal speed improvements. These bene-
fits become important in data-intensive sciences, such as biomedical
research.

4. Workflow visualization - 2 months

We add diagrammatic representations of the list of operations that
are implemented, letting users understand better the structure of their
workflows. This is again based on [20].

5. Operation reordering - 2 months

We introduce the possibility of reordering operations in the undo/redo
history. This feature would only be available for row-wise operations
working on different columns, implementing the new interface. Re-
ordering could be triggered directly by dragging nodes on the graphi-
cal visualization.

6. Concurrent operations - if time allows

We add the possibility of running independent operations concurrently,
such as reconciling two different columns in parallel. The workflow

5 existing support 6

representation should also make it possible to execute different oper-
ations on disjoint subsets of rows, but this is likely to be harder to
expose to the user.

7. Partial computations - if time allows

We return the control to the user before the full computation of long-
running operations terminates. For instance, when reconciling a col-
umn, the user can start inspecting the first few reconciliation results
immediately. They can perform other operations while reconciliation
is progressing. These other operations are executed immediately even
if they depend on the reconciliation results. This relies on the stream-
ing capabilities of the underlying execution backend.

8. Multi-user support - if time allows

We add a notion of a "user" to keep track of the author of each change
and make necessary adjustments to the interface and server to let mul-
tiple users work on the same project seamlessly.

5 existing support

OpenRefine has been supported in 2018 by a 100,000 USD grant from the
Google News Initiative.6 These funds have been fully used for contract work
by the core team in 2018. OpenRefine development is currently carried out
on a voluntary basis.

The research which designed the new architecture for OpenRefine [20]
was carried out by Antonin Delpeuch as part of his DPhil at the University
of Oxford, which is supported by the Engineering and Physical Sciences
Research Council7. in the United Kingdom.

6 https://newsinitiative.withgoogle.com/

7 https://epsrc.ukri.org/

1

2

4

5

3

6

8

7

Figure 1: Dependencies between the work packages for the new architecture

https://newsinitiative.withgoogle.com/
https://epsrc.ukri.org/

References 7

references

[1] Benedikt Kampgen, Horst Werner, Radwan Deeb, and Christof Born-
hovd. Towards a Semantic Clinical Data Warehouse: A Case Study of
Discovering Similar Genes. page 6, 2015.

[2] Gurnoor Singh, Arnold Kuzniar, Erik M. van Mulligen, Anand
Gavai, Christian W. Bachem, Richard G.F. Visser, and Richard Finkers.
QTLTableMiner++: Semantic mining of QTL tables in scientific articles.
BMC Bioinformatics, 19(1):183, May 2018.

[3] Terje Klemetsen, Inge A. Raknes, Juan Fu, Alexander Agafonov, Sud-
hagar V. Balasundaram, Giacomo Tartari, Espen Robertsen, and Nils P.
Willassen. The MAR databases: Development and implementation of
databases specific for marine metagenomics. Nucleic Acids Research,
46(D1):D692–D699, January 2018.

[4] Jascha Silbermann, Catrin Wernicke, Heike Pospisil, and Mar-
cus Frohme. RefPrimeCouch—a reference gene primer CouchApp.
Database, 2013, January 2013.

[5] Xiaohui Yao, Jingwen Yan, Michael Ginda, Katy Börner, Andrew J.
Saykin, Li Shen, and for the Alzheimer’s Disease Neuroimaging Ini-
tiative. Mapping longitudinal scientific progress, collaboration and im-
pact of the Alzheimer’s disease neuroimaging initiative. PLOS ONE,
12(11):e0186095, November 2017.

[6] Vasco de Almeida Jorge Veríssimo. Data acquisition, curation and mod-
eling for integration of Alzheimer’s disease neuroimaging data from
ADNI in the translational biomedicine platform tranSMART. 2015.

[7] I. P. A. Schilder. Dynamics of Search Spaces in
the Drug Development Process of Alzheimer’s Disease.
http://dspace.library.uu.nl/handle/1874/355823, 2017.

[8] Jose Antonio Garrido-Cardenas, Concepción Mesa-Valle, and Fran-
cisco Manzano-Agugliaro. Genetic approach towards a vaccine against
malaria. European Journal of Clinical Microbiology & Infectious Diseases,
37(10):1829–1839, October 2018.

[9] Christiane Hagel, Felix Weidemann, Stephan Gauch, Suzanne Edwards,
and Peter Tinnemann. Analysing published global Ebola Virus Disease
research using social network analysis. PLOS Neglected Tropical Diseases,
11(10):e0005747, October 2017.

[10] Maulik R. Kamdar and Michel Dumontier. An Ebola virus-centered
knowledge base. Database, 2015, January 2015.

[11] Yaoyu E. Wang, Lev Kutnetsov, Antony Partensky, Jalil Farid, and John
Quackenbush. WebMeV: A Cloud Platform for Analyzing and Visual-
izing Cancer Genomic Data. Cancer Research, 77(21):e11–e14, November
2017.

References 8

[12] Deborah L. McGuinness, Abdul R. Shaikh, Richard Moser, Bradford W.
Hesse, Glen D. Morgan, Erik M. Augustson, Yvonne Hunt, Zaria Tat-
alovich, Gordon Willis, and Kelly Blake. A Semantically-enabled Com-
munity Health Portal for Cancer Prevention and Control. Technical
report, RENSSELAER POLYTECHNIC INST TROY NY, June 2011.

[13] Jermaine Goveia, Andreas Pircher, Lena-Christin Conradi, Joanna
Kalucka, Vincenzo Lagani, Mieke Dewerchin, Guy Eelen, Ralph J De-
Berardinis, Ian D Wilson, and Peter Carmeliet. Meta-analysis of clini-
cal metabolic profiling studies in cancer: Challenges and opportunities.
EMBO Molecular Medicine, 8(10):1134–1142, October 2016.

[14] Karakülah Gökhan, Suner Aslı, Adlassnig Klaus-
Peter, and Samwald Matthias. A Data-driven Living Review for Phar-
macogenomic Decision Support in Cancer Treatment. Studies in Health
Technology and Informatics, pages 688–692, 2012.

[15] Maria-Elena Hernandez, Sean M. Falconer, Margaret-Anne Storey, Si-
mona Carini, and Ida Sim. Synchronized Tag Clouds for Exploring
Semi-structured Clinical Trial Data. In Proceedings of the 2008 Confer-
ence of the Center for Advanced Studies on Collaborative Research: Meeting of
Minds, CASCON ’08, pages 4:42–4:56, New York, NY, USA, 2008. ACM.

[16] Deepak K. Sharma, Harold R. Solbrig, Eric Prud’hommeaux, Kate Lee,
Jyotishman Pathak, and Guoqian Jiang. D2Refine: A Platform for Clin-
ical Research Study Data Element Harmonization and Standardization.
AMIA Summits on Translational Science Proceedings, 2017:259–267, July
2017.

[17] Deepak K. Sharma, Harold R. Solbrig, Eric Prud’hommeaux, Jyotish-
man Pathak, and Guoqian Jiang. Standardized Representation of Clini-
cal Study Data Dictionaries with CIMI Archetypes. AMIA Annual Sym-
posium Proceedings, 2016:1119–1128, February 2017.

[18] A. Kiourtis, A. Mavrogiorgou, and D. Kyriazis. Aggregating Heteroge-
neous Health Data through an Ontological Common Health Language.
In 2017 10th International Conference on Developments in eSystems Engi-
neering (DeSE), pages 175–181, June 2017.

[19] Alberto Montresor, Andrii Bratus, and Giuliano Mega. RefineOnSpark:
A Simple and Scalable ETL Based on Apache Spark and OpenRefine. PhD
thesis, University of Trento, 2014.

[20] Antonin Delpeuch. A complete language for faceted dataflow programs.
In arXiv:1906.05937 [Cs, Math], To Appear in Proceedings of the Applied
Category Theory 2019, Oxford, June 2019.

[21] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, pages 2–2. USENIX
Association, 2012.

References 9

[22] Tyler Akidau, Eric Schmidt, Sam Whittle, Robert Bradshaw, Craig
Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven
Lax, Sam McVeety, Daniel Mills, and Frances Perry. The dataflow
model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proceedings
of the VLDB Endowment, 8(12):1792–1803, August 2015.

	1 Goals
	2 Growing the contributor community
	2.1 Developing an official user guide
	2.2 Developing a contributor guide

	3 Revamping the core data model
	3.1 Working with large data sets
	3.2 Refining collaboratively
	3.3 Analyzing, sharing and reusing workflows
	3.4 Running workflows in production

	4 Work plan
	4.1 Growing the community
	4.2 Revamping the data model

	5 Existing support

